2,612 research outputs found

    Electron-positron pair production in the external electromagnetic field of colliding relativistic heavy ions

    Get PDF
    The results concerning the e+e−e^+e^- production in peripheral highly relativistic heavy-ion collisions presented in a recent paper by Baltz {\em{et al.}} are rederived in a very straightforward manner. It is shown that the solution of the Dirac equation directly leads to the multiplicity, i.e. to the total number of electron-positron pairs produced by the electromagnetic field of the ions, whereas the calculation of the single pair production probability is much more involved. A critical observation concerns the unsolved problem of seemingly absent Coulomb corrections (Bethe-Maximon corrections) in pair production cross sections. It is shown that neither the inclusion of the vacuum-vacuum amplitude nor the correct interpretation of the solution of the Dirac equation concerning the pair multiplicity is able the explain (from a fundamental point of view) the absence of Coulomb corrections. Therefore the contradiction has to be accounted to the treatment of the high energy limit.Comment: 6 pages, 4 Postscript figures, uses svjour.cls/svepj.cl

    Modification of surface energy in nuclear multifragmentation

    Get PDF
    Within the statistical multifragmentation model we study modifications of the surface and symmetry energy of primary fragments in the freeze-out volume. The ALADIN experimental data on multifragmentation obtained in reactions induced by high-energy projectiles with different neutron richness are analyzed. We have extracted the isospin dependence of the surface energy coefficient at different degrees of fragmentation. We conclude that the surface energy of hot fragments produced in multifragmentation reactions differs from the values extracted for isolated nuclei at low excitation. At high fragment multiplicity, it becomes nearly independent of the neutron content of the fragments.Comment: 11 pages with 13 figure

    Observation of the phononic Lamb shift with a synthetic vacuum

    Full text link
    The quantum vacuum fundamentally alters the properties of embedded particles. In contrast to classical empty space, it allows for creation and annihilation of excitations. For trapped particles this leads to a change in the energy spectrum, known as Lamb shift. Here, we engineer a synthetic vacuum building on the unique properties of ultracold atomic gas mixtures. This system makes it possible to combine high-precision spectroscopy with the ability of switching between empty space and quantum vacuum. We observe the phononic Lamb shift, an intruiguing many-body effect orginally conjectured in the context of solid state physics. Our study therefore opens up new avenues for high-precision benchmarking of non-trivial theoretical predictions in the realm of the quantum vacuum
    • 

    corecore